
Hilait: Automatic Highlighting System Leveraging Facial, Audio, Text
Sentiment AI

Tony Xia
tonyx717@stanford.edu

Danica Xiong
daxiong@stanford.edu

1. Introduction (Background and Setup)

1.1. Problem Statement

In recent years, the popularity of live streaming plat-
forms for gaming, such as Twitch, YouTube Gaming, and
Facebook Gaming, has surged exponentially, establishing
a burgeoning industry around live video game content.
Within this landscape, digital content creation, streamers
and content creators face the significant challenge of ef-
ficiently identifying and highlighting key moments from
hours of video footage. Manually sifting through lengthy
videos to find exciting clips is time-consuming and labor-
intensive. This problem is exacerbated for small stream-
ers who may lack the resources to hire editors, thus limit-
ing their ability to produce engaging short-form content for
platforms like TikTok and YouTube.

We have developed Hilait, an Automatic Highlighting
System that integrates multiple AI technologies to process
diverse data inputs — video, audio, facial expressions, chat
data, and game API events — in parallel. By doing so, we
aim to create a comprehensive solution that not only reduces
the workload for streamers and editors but also ensures the
quality and relevance of the generated highlights.

We seek to answer whether it is possible to generate
high-quality clips using a multimodal data approach and to
determine the relative importance of each data type in pro-
ducing these highlights. Our core constraints are:

• Ease of Use: The system must be user-friendly, allow-
ing streamers to easily integrate it into their workflows
without extensive technical knowledge or setup.

• High Clip Quality: The tool must consistently pro-
duce high-quality clips that capture the most engaging
and relevant moments. Similar to what an editor would
choose for their video.

• Time Efficiency: The system should significantly re-
duce the time streamers spend searching for and edit-
ing highlight clips. This includes being able to process
video in a reasonable timeframe.

1.2. Inputs

To maintain the system’s ease of use, streamers need
only to input the ID of the Twitch video they want to high-
light. This ID is taken directly from the Twitch video link.
Our pipeline automatically handles the following processes:

• Download Full VOD: The system downloads the
complete Twitch VOD as an MP4 file.

• Chat Data: The associated chat data is also down-
loaded and stored in a JSON file.

To incorporate game API data, users need to provide addi-
tional information due to limitations of Riot’s Remote API.
Currently, we handle this portion manually ourselves, but
this process can be easily automated by building our app
in C++ and using Riot’s Local API, explained in the API
section:

• Gamer ID: The unique Username and Hidden Tag of
the streamer’s gaming account.

• Champions Information: The names of the champi-
ons involved in their game.

• Timestamp: A single timestamp of in game time to
ensure proper alignment with the video data.

1.3. Outputs

The primary output of our system is a series of high-
lighted video clips. These clips are generated based on
specified intervals along with a corresponding score of how
interesting the minute is. The default settings are is a clip
length of 1 minute, however, this can be adjusted to produce
shorter or longer clips as needed.

1.4. Problem Crux

Our project faced two primary challenges that were es-
sential to its success:

1. Combining Multiple Modalities of Data: The first
major challenge was integrating diverse data types

1



Figure 1. The following is our data processing pipeline. From the video Id, we get 3 inputs: Stream Video, Chat Video, and Game API.
Eachis split into their raw data, ie. Face Cam, Screen Video, Audio, Chat video, be processed by their corresponding models, and then
used as input to timestamp the video.

into a cohesive scoring system. Each data modal-
ity—video frames, audio streams, chat logs, and game
API events—has its own temporal characteristics and
formats include frames, seconds, event times (relative
to game start time), chat (relative to video start time).

2. Generating Meaningful Highlights: The second
challenge was to generate highlights that were not only
accurate but also meaningful and engaging.

Many previous works only focus on a single input mode to
highlight, ie.Video or Chat: Video Highlights Detection and
Summarization with Lag-Calibration based on Concept-
Emotion Mapping of Crowd-sourced Time-Sync Comments
[5] and Video Highlight Prediction Using Audience Chat
Reactions [2], Unsupervised Extraction of Video Highlights
Via Robust Recurrent Auto-encoders [8] Furthermore, these
papers do not have meaningful evaluation on how good their
highlights were.

2. Approach

3. Video Pipeline
Due to Twitch restrictions on VOD downloading, we

utilize the CLI tool, Twitch Downloader, to download full
VODs. Given the video ID, we download the VOD in 1-
hour segments and stitch them together using Ffmpeg. This
combined video is then passed to the Audio and Facial
pipelines for further processing. For testing purposes, the
shortest VOD we processed was 2.5 hours, and the longest
was 14.5 hours.

3.1. Facial Expression Recognition Pipeline

The Facial Expression Recognition (FER) pipeline is de-
signed to analyze the facial expressions of the streamer

throughout the VOD. The goal is to classify the streamer’s
facial expressions at fixed time intervals to determine if their
emotion is worth highlighting.

The input is video frames from the MP4 in 20 frame in-
tervals. The pipeline consists of two main components: a
face detector and a facial expression classifier. The face de-
tector identifies and clips the streamer’s face from the entire
video frame, while the facial expression classifier analyzes
the clipped face to determine the streamer’s emotion at that
specific frame.

3.1.1 Facial Detection

To accurately recognize the streamer’s face, we first em-
ploy YOLOv8 [4] to detect candidate faces within the entire
stream window. The model outputs a list of detected faces.
Next, using a pre-trained VGG network provided by Deep-
Face [7], we compute the similarity between each detected
face and an identity image provided by the user. The face
with the highest similarity score is selected and passed into
the facial expression classifier. This ensures that the correct
face is consistently identified throughout the video. (We
determined this was necessary because one of the stream-
ers searched up ”hairlines” on Google and our system was
overwhelmed by images of male faces and their hairlines.)

3.1.2 Facial Emotion Classification

The facial expression classifier processes the selected face
and outputs a score for each of the seven emotion labels
defined in the FER 2013 dataset [3]. This score is used
as an indicator of the streamer’s emotional state, helping
to identify moments in the video that are worth capturing.
The emotions are classified as [”angry”, ”disgust”, ”fear”,
”happy”, ”sad”, ”surprise”, ”neutral”] We trained several

2



architectures to classify these faces, but will not be going in
to depth due to it being less relevant for this class.

3.2. Audio Pipeline

The Automatic Speech Recognition (ASR) component
is a crucial part of our system, aimed at transcribing the
streamer’s voice lines for downstream sentiment analysis
using GPT. We chose OpenAI’s open source ASR model,
Whisper [6], for this task due to its accuracy and robust-
ness.

To process the audio, we first convert the MP4 stream
video into an MP3 audio file. Whisper’s transcription does
not include timestamps, making it challenging to align the
audio transcription with other components in downstream
tasks. To address this, we segment the audio input into into
30-second clips and run the pipeline on each clip indepen-
dently. This approach allows us to parallelize audio tran-
scription.

After processing, we obtain a CSV file containing au-
dio transcriptions segmented into 30-second intervals. This
structured output by seconds is passed into downstream for
Sentiment Analysis.

3.3. Chat Pipeline

The chat pipeline leverages a prebuilt tool, Twitch
Downloader, which performs Optical Character Recogni-
tion on the chat and outputs a JSON file. The JSON file
contains two key pieces of information: the timestamp of
each message, relative to the start of the video, and the con-
tent of the message. This data is then passed to a sentiment
analysis model for further processing.

3.4. API

There were several challenges we encountered when
aligning the API to the video. API events were relative
to the start of the game, and the start of the game is given
in PST. All other data format times are relative to the start
of the video. Due Twitch’s lack of transparency for exact
video start times, we could not align videos using the World
Clock.

To align the API to the video, we took several steps: For
each match, we record a single timestamp ”GameTimeS-
tamp” displayed in the video’s top right corner, along with
the corresponding video time ”VideoTimeStamp”. Addi-
tionally, we manually save the Streamer’s username and
the characters in the current game. We had to do this be-
cause usernames contained hidden tags which couldn’t be
transcribed with OCR. Furthermore, live game APIs could
not be accessed unless our app was running locally on the
player’s computer. We also could not perform OCR on the
character names because many of the streamers had ”over-
lays” which is art that covers portions of their stream, in-
cluding the character names. Thus, manual transcription

Figure 2. The following is our combination step where the results
of all of our components are put into the final score. All compo-
nents are parallelized and combined at the end

was the most reliable option.
We then queried and cached data from the Riot API for

the 200 most recent games played by the Streamer. We per-
form a search for matching character sets in every game.
Upon identifying matches, we queried the Riot API for
match timestep data, which returns player positions, states,
and events occurring throughout the game. Events include
monster kills, character kills, deaths, and assists.

We aligned the real-time API Event with video times-
tamps with the following equation:

AlignedEvent = VideoTimeStamp − GameTimeStamp
+ APIEventTime

This formula facilitated the synchronization of event data
from the API with the corresponding moments in the video.
The event and relative timestamp to the video are used for
further processing. Due to API query limitations, it takes
2-4 minutes to generate all API calls for a 14 hour VOD.

3.5. Sentiment Analysis Pipeline

We utilize GPT to provide a score and determine the gen-
eral emotion of the content. The process varies slightly be-
tween chat messages and audio transcriptions but follows a
similar approach. For chat sentiment analysis, we aggregate
chat messages into 1-minute intervals. Each interval’s mes-
sages are sent to GPT with a prompt informing it that the
content is from a Twitch chat. We ask GPT to rate the over-
all sentiment from 1 to 10 and identify the general emotion

3



Figure 3. Confusion Matrices When Evaluated on MiniFace

from the following categories: ”angry,” ”disgust,” ”fear,”
”happy,” ”sad,” ”surprise,” and ”neutral.” The same happens
to 1 the audio analysis, except we state in the prompt that a
streamer playing X game is speaking.

3.6. Combination and Scoring

We combine all scores at the end of the pipeline. The
Sentiment pipeline reveals scores for Chat and Audio tran-
scription which is used directly. We count the API events
and give each event type a weight. We also value non-
Neutral emotions and weigh Happy and Surprised higher.
We tuned the by generating highlights, evaluating them our-
selves, and then tuning the weights again. All streamers
used the same scoring mechanism. We plan to train a net-
work for this regression task, however, due to data con-
straints and tight timeline, we decide to use a manually
tuned scoring system for now. This resulting in the follow-
ing formula:

Score = 0.3 · Chat Score + 0.3 · Audio Score
+ 0.6 · count(API = kill) + 0.3 · count(API = other)
+ 0.05 · 1[FER = happy] + 0.1 · 1[FER = surprised]
+ 0.1 · 1[FER ̸= neutral]

where Chat Score,Audio Score ∈ [0, 10] are the scores we
retrieve from GPT, count counts the the number of specified
API events within the time window, and FER is the most
likely emotion returned by the FER pipeline.

3.7. Clip Display and Rating Collection

To streamline the process of viewing and rating clips, we
developed a website where all generated clips are displayed
for evaluation. This website serves as a user-friendly inter-
face for streamers and editors to assess the quality of the
highlights and provide feedback.

Users can watch each clip and rate its quality on a scale
from 1 to 10. These ratings are saved in our SupaBase
database which we’d like to use to train a scoring model.

4. Results and Evaluation
To evaluate our system, we perform quantitative and

qualitative evaluations on clip quality, utility provided to

Figure 4. A challenging example of face recognition

streamer, and component wise analysis to ensure each com-
ponent is contributing valid scores to our final score.

4.1. Evaluation of the FER Pipeline

As our system’s output directly depends on the quality
of each of the components of our system, we need to en-
sure that each of our pipelines is outputting results fast and
accurately.

We evaluated the components of our facial expression
recognition pipeline on their speed, robustness, and accu-
racy.

4.1.1 Speed

We evaluated the speed and accuracy of different face detec-
tors provided by DeepFace. We randomly picked 4 screen-
shots from different streams and passed them into the face
detectors and checked the correctness of the output. We dis-
covered that YOLOV8 was able to detect the faces correctly
much faster than the other models (Table 3).

Method Time (s) Accuracy
opencv 1.499 1/4
mtcnn 3.435 4/4
fastmtcnn 2.911 4/4
retinaface 3.268 4/4
yolov8 0.964 4/4

Table 1. Performance comparison of different methods

4



Transcription Without
Context

W/ Context Explanation

Like way too much shuntu now. Oh she flashes on me too.Wow
everyone’s flashing on me. I could have lived there.

6: Excited 8: Excited Enemy team use impor-
tant spell ”Flash” to am-
bush streamer

key to We win 4v5. Okay, whatever. We won by the way. Like
4v5, we win. Like, I don’t know why we surrendered.

8: Angry 6: Confused Team surrenders when
streamer believes they
could win

Table 2. Prompting w/ and w/o context

Transcription 1-5 1-10 Explanation
Bye bye. Woo! Woo! Ah! Jin is broken! So now I can just
carry my teammates. No matter how bad they play. I’m gonna
honor Lee.

5: Excited 10: Excited Streamer wins a fight
against entire enemy
team

Dude, Jinn is so fucking broken. Holy fuck, I almost killed
Grace, man. I didn’t have a head ghost and just like...spent my
golds. That’s an easy triple kill.

5: Excited 8: Excited Streamer almost wins a
fight against 3 players

Table 3. Prompting scales 1-5 and 1-10

Even though the sample size was small, we believed that
YoloV8 demonstrated enough advantages over the other
models, and thus we decided to use YoloV8 as our face de-
tector.

4.1.2 Robustness

The robustness of the face detector is also important to the
success of the pipeline. As streamers can display anything
on stream, we need to be able to differentiate the streamer’s
face from others’ face.

Figure 4 shows an example of running our model on
frames with multiple faces. As indicated by the red box
near the bottom left corner of the image, our pipeline was
able to identify the correct face.

4.1.3 Accuracy

We ran evaluations of our self-trained CNN, ResNet18, pre-
trained and finetuned ResNet18, and DeepFace provided fa-
cial expression classifier on the FER2013 dataset. While the
hyperparameters are still not perfectly tuned, we can see
that after fine tuning, the pre-trained ResNet18 can reach a
validation accuracy of 63%.

In addition, we constructed a mini dataset, MiniFace,
consisting of 61 stream screenshots with streamer expres-
sions labeled manually by us. We then evaluated our FER
pipeline on this mini dataset. ResNet18 pretrained on Im-
ageNet [1] and finetuned on FER2013 performed the best,
getting a 55% accuracy on the dataset. CNN and DeepFace
achieved a 49% accuracy, while ResNet18 trained from
scratch got only 45% of the labels correct.

Figure 3 shows the confusion matrices of each of these
models when evaluated on MiniFace. From the matrices,
we see that all models tend to mix up neutral and sad faces.
While features like smiles and frowns are big enough to be
retained, the differences between a sad face and a neutral
face can be more nuanced and small in scale, causing the
information to be lost when we downscaled the images be-
fore passing into the neural networks. Currently, this issue
does not affect the model output as much, as sadness is one
of the less common emotions expressed by streamers. We
therefore decided to recategorize sad faces to neutral faces
as a workaround. In the future, to mitigate this issue, we
could train a larger network that expects higher definition
inputs on larger facial expression datasets. With less infor-
mation lost in the process, we expect the classifiers to be
better at differentiating sad and neutral faces.

4.2. Sentiment Analysis Results

We prompted GPT in different ways, with and without
game and platform context. The prompt without context
was: This is a streamer’s audio transcription. rate it from
1-10. 1 is bored and 10 is very engaged.

The prompt with context adds the sentence: This is
a Twitch streamer’s audio transcription. He is playing
League of Legends.For the first transcription, the prompt
with context yields a better result. Flash is the most impor-
tant spell in the game with a 2 minute cool down. Using
multiple flashes from many enemy teammates is an impor-
tant clip.

Team surrendering occurs very often (After 9 minutes,
70 percent of players vote to surrender). Thus, rating the
2nd transcription an 8 may overboard. Though you may

5



Figure 5. Contribution of chat data to final score

Figure 6. Overall contribution of each type of data to the final
Score

argue it should be an 8 since the streamer disagrees with
the surrender. We realized without the context of “Twitch”
and “League of Legends”, GPT would miss out on impor-
tant contexts such as what “Flash” referred to, and certain
internet slang used in chat rooms.

We also prompted GPT on different scales: from 1-5 and
1-10. When given a larger range, GPT is able to give more
nuanced scores. Both of the above transcriptions were rated
5 on the 1-5 index. However, when rated from 1-10, GPT
was able to differentiate between a big win and a slightly
smaller win.

Thus for best performance, we prompted GPT to rate
scores from 1-10 and provided it the game the streamer is
streaming, and that they are using Twitch.

4.3. Scoring Results

We highlight the top 10 clips from every game. Most
highlighted clips are above a 7 in score. The reason why the
graphs have so many fluctions is because one minute could
change very quickly in terms of highlight ability. This is
part of why we are builting the system, and as stated by
streamer T, this is what makes or break a good editor.

Figure 7. Contribution of non-chat data to final score

Due to the API, the clip can have a weight higher than
10 since we accumulate the number of events in a time in-
terval, so the score ranges from 0 to ∞ with the maximum
score encountered as a 13. In figure 5 and 7, you can see
the contribution of non chat data vs chat data. They have
about equal contribution which makes sense since audio is
weighted 0.3 and APIs have sporadic contribution. From
figure 6, you can see that the green audio and red chat graph
share similar peaks sometimes, but also have various times
where they have their own peaks signifying higher contri-
bution from just audio or just chat. The API also offers
random contributions, however there are certain moments
such as at time 14000 where only chat and audio are re-
sponsible for the peak and not APIs. From the data, we do
think that Facial data contribution is consistently very low
and relatively flat compared to APIs. Instead of accumulat-
ing all emotions to adjust the score, an alternative approach
may be to try to use emotions to categorize highlights by
emotion, ie. Angry vs Surprised vs Neutral highlights.

4.4. Quantitative Clip Quality Results

The feedback on the quality of our generated clips was
varied. For the sake of privacy, the 5 streamers who gave
feedback will be referred to as N, M, T, S, E. 3 out of 5
streamers did not to provide feedback by filling out the rat-
ing forms (M,T,S), indicating a potential lack of interest or
time constraints, it is notable that none of the respondents
offered concrete details regarding the time taken to view the
clips or identify superior alternative clips.

High Follower Streamers (T and M): The two streamers
with the highest follower counts (2 million and 400k fol-
lowers each) were very satisfied with our clips. They appre-
ciated how our system effectively highlighted the exciting
moments of the game, aligning well with the type of con-
tent they aimed to share with their large audiences.

We analyzed the difference between the streamers’ rat-
ings and our system’s ratings for the clips. Here are some
key insights: Streamer M gave our overall highlight quality

6



a 9/10. Streamer T filled out our form with the following
ratings:

Our Score Streamer T’s Rating

6 6
6 5
5 8
5 5
5 7.5
4 5
4 5.5
4 7
4 5
4 4

Streamer T gave an overall rating of highlight quality a 9/10
as well, and the difference in their rating vs our rating as 1.3
per clip, with a minimum difference of 0 and a maximum
difference of 3.

High-Ranking Streamers (S and N): Conversely, the two
streamers, with the highest rankings (both top 200 players in
North America, with 100k and 200k followers each) were
less satisfied. Streamer S mentioned that while the clips
were exciting, they did not match the educational content
he typically produced, which focused on in-depth gameplay
strategies. He insisted that there was a very important clip
that we missed out on, where he played a strategy for a full
minute, and it resulting in a single kill. This could be an
issue with our interval system not taking into account clip
contexts longer than a minute. Also our scoring system may
place an overemphasis on multiple kills and chat.

Streamer N felt that our system overemphasized mo-
ments where he “got loud,” suggesting that the combination
of API and chat excitement indicators was too sensitive. In-
terestingly, we did not factor in how loud the audio was,
only the transcribed audio and it’s sentiment.

Streamer S gave our clips a 3/10 on overall clip quality,
whereas Streamer N gave a 5/10 with the following ratings:

Our Score Streamer N’s Rating

10 10
8 0
8 2
7 2
7 5

6.5 3
6 0
6 0
6 7
6 5

This table shows an average difference of 3.25 with a mini-
mum difference of 0 and a maximum difference of 8.

This feedback indicates that our system might have over-
valued certain moments due to the convergence of multi-
ple excitement signals, especially playing too much value
on APIs and Chat reactions. In fact, it’s likely that the
0.3 weight on chat and 0.3 weight on the APIs were too
high, especially for nuanced educational content. A poten-
tial fix for this would be adding a parameter in the sentiment
pipeline called ”educational”, where GPT can rate the edu-
cational content. We could make a separate score for this for
streamers that want to focus on different types of content.

These mixed results reveal important areas for improve-
ment. Different streamers have different content prefer-
ences, which suggests a need for more customizable and
nuanced models. To better cater to diverse needs, we are
considering developing separate models tailored to differ-
ent types of content. This customization would enhance the
relevance and quality of the highlights generated for each
individual streamer.

4.5. Qualitative Clip Feedback

The most notable success was from the 14-hour VOD
(streamer M), where 9 out of 10 clips were used in a high-
light video by a streamer with 2 million followers. The only
misstep occurred when GPT mistakenly identified the chat
spamming “hello” at the start of the stream as a highly ex-
citing moment. This feedback underscores the potential of
our system but also highlights areas for improvement.

The most popular complaint from streamers was the dif-
ficulty in viewing the clips. Initially, we provided them with
a CSV file containing timestamps of their entire stream,
ranked by score. However, they found it cumbersome to
copy and paste the timestamps into their browser to view
the clips.

In response to this feedback, we developed hilait.com, a
platform that automatically displays clips along with their
timestamps. This website not only simplifies the viewing
process but also asks streamers to rate each clip. These rat-
ings are recorded for future score training purposes.

The most significant quality complaint came from
Streamers N and S, who noted that our system failed to cap-
ture nuanced conversations and educational content. While
our system excels at identifying “hype” clips, it struggles
with subtler, more meaningful moments.

To address this, we propose increasing the weight of au-
dio transcription and expanding the range of parameters be-
yond basic emotions like “happy” or “sad” to include cat-
egories like ”educational” and ”sentimental.” Additionally,
enhancing the role of facial expression analysis could be
crucial, as nuanced conversations are often reflected in fa-
cial cues.

Our goal is to make these adjustments tunable, allowing
streamers to customize the style of highlights they prefer.
This flexibility would enable our system to better meet the

7



diverse needs of different streamers, from those who want
to capture thrilling gameplay moments to those who focus
on in-depth educational content.

4.6. Time Saved Metric

Streamers did not give us a concrete time as to how much
time they saved. However, they did state that their expec-
tation from their editors that they watch their VODs from
start to finish to find the best clips. The consensus from all
Streamers was that it made the process much faster. In order
to gauge how much time they actually saved, we checked
the google timeline feature and checked how long it took
for them to fill out our ratings form. Since we only got rat-
ings from streamers T and N, here are the results:

Streamer VOD Length Time spent with tool

T 8 hours 28 minutes
N 2.5 hours 53 minutes

Keep in mind, Streamer N did not know that you could copy
and paste timestamps into a link to jump to that time, and
complained about copy pasting taking too long.

Furthermore, we received enthusiastic feedback from
Streamer E, a friend of Streamer T, who reported that our
tool enabled him to create short-form content for the first
time. Previously, he had been unable to do so due to the lack
of an editor and not having enough time. This highlights
the potential of our system to empower smaller streamers
by significantly reducing the barriers to content creation.
Lastly, Streamer M, N, T, and E were all interested in using
our tool again, under the assumption that they would have
the website to navigate the suggested clips. This suggests
that despite output, the streamers appreciated the concept
the tool.

5. Discussion
A philosophical question arising from our system is:

How much data are we losing when we solely process video
data? Do non-video forms of data provide essential mean-
ing, or do they merely add irrelevant information at a high
cost?

A glaring result is that facial recognition does not con-
tribute very highly to the weight of our final score. Despite
it being pre-trained and parallelized per video frame, result-
ing in minimal additional cost, it adds no benefit when it
is overshadowed by game APIs and Chat reactions. This
is abundantly clear for popular streamers with many chat
viewers and playing a game with supported APIs.

However, for smaller streamers with minimal chat in-
teraction, playing indie games with no API support, facial
data becomes an invaluable asset. In these contexts, the
streamer’s facial expressions can convey emotions and reac-
tions that are otherwise would’ve been expressed with chat

and API calls, providing crucial context that would be lost.
We’d like to explore this avenue further, especially in horror
games where facial recognition may a more crucial role.

We also display importance of audio transcription and
sentiment analysis. Despite the comparatively sparse liter-
ature on audio highlighting, it remains a pivotal element of
our system. Our biggest feedback was that streamers prior-
itize substantive and educational content conveyed through
their verbal discourse, emphasizing the need for precise au-
dio transcription and sentiment analysis to capture and ele-
vate these significant verbal interactions.

6. Conclusion
In conclusion, our Automatic Highlighting System rep-

resents a significant advancement in the realm of content
creation for streamers. By building an end to end system
that harness various forms of AI data, we have developed
a tool that streamlines the process of identifying and high-
lighting compelling moments from video streams.

Through our evaluation and feedback from streamers and
editors, we have demonstrated the feasibility of building an
end to end system with multiple data inputs. We have also
streamlined workflows and significant time savings were
consistently reported across a diverse range of streamers,
from those with large followings to smaller creators. Our
tool has democratized the content creation process, enabling
small streamers to compete in the short-form content do-
main alongside their larger counterparts.

Although our clip quality feedback was a mixed bag,
we are hopeful for improvement. Looking ahead, fine-
tuning the scoring algorithm and exploring additional data
sources could enhance the accuracy and relevance of gener-
ated highlights. Additionally, continued collaboration with
streamers and content creators will ensure that our system
evolves to meet the evolving needs and preferences of its
users.

We hope our tool unlocks new possibilities for story-
telling and engagement, ultimately enriching the streaming
experience for both creators and viewers.

7. Team Responsibilities
7.1. Tony’s

• Audio Transcription pipeline

• Facial Detection pipeline

• Deepface/Facial Emotion Recognition pipeline

• Facial dataset collection and benchmarking

• Network training and evaluation

• CNN for facial recognition (not really relevant for this
class?)

8



• Confusion matrices

7.2. Danica’s

• Game API pipeline

• Chat Transcription Pipeline

• Sentiment Analysis Pipeline

• Final Combination and Scoring

• Video Pipeline w/ CLI

• ResNet and Pretrained models for facial recogni-
tion, image preprocessing (not really relevant for this
class?)

• Saliency Maps, Class Visualization

• Website and backend to collect rating data

• Working with streamers to get feedback

References
[1] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li

Fei-Fei. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 248–255, 2009. 5

[2] Cheng-Yang Fu, Joon Lee, Mohit Bansal, and Alexander C.
Berg. Video highlight prediction using audience chat reac-
tions, 2017. 2

[3] Ian J. Goodfellow, Dumitru Erhan, Pierre Luc Carrier,
Aaron Courville, Mehdi Mirza, Ben Hamner, Will Cukierski,
Yichuan Tang, David Thaler, Dong-Hyun Lee, Yingbo Zhou,
Chetan Ramaiah, Fangxiang Feng, Ruifan Li, Xiaojie Wang,
Dimitris Athanasakis, John Shawe-Taylor, Maxim Milakov,
John Park, Radu Ionescu, Marius Popescu, Cristian Grozea,
James Bergstra, Jingjing Xie, Lukasz Romaszko, Bing Xu,
Zhang Chuang, and Yoshua Bengio. Challenges in represen-
tation learning: A report on three machine learning contests,
2013. 2

[4] Ultralytics LLC. Yolov8: Real-time object detection and seg-
mentation, 2024. Accessed: 2024-05-17. 2

[5] Qing Ping and Chaomei Chen. Video highlights detection and
summarization with lag-calibration based on concept-emotion
mapping of crowd-sourced time-sync comments, 2017. 2

[6] Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman,
Christine McLeavey, and Ilya Sutskever. Robust speech
recognition via large-scale weak supervision, 2022. 3

[7] Sefik Serengil and Alper Ozpinar. A benchmark of facial
recognition pipelines and co-usability performances of mod-
ules. Bilisim Teknolojileri Dergisi, 17(2):95–107, 2024. 2

[8] Huan Yang, Baoyuan Wang, Stephen Lin, David Wipf, Minyi
Guo, and Baining Guo. Unsupervised extraction of video
highlights via robust recurrent auto-encoders, 2015. 2

9


	. Introduction (Background and Setup)
	. Problem Statement
	. Inputs
	. Outputs
	. Problem Crux

	. Approach
	. Video Pipeline
	. Facial Expression Recognition Pipeline
	Facial Detection
	Facial Emotion Classification

	. Audio Pipeline
	. Chat Pipeline
	. API
	. Sentiment Analysis Pipeline
	. Combination and Scoring
	. Clip Display and Rating Collection

	. Results and Evaluation
	. Evaluation of the FER Pipeline
	Speed
	Robustness
	Accuracy

	. Sentiment Analysis Results
	. Scoring Results
	. Quantitative Clip Quality Results
	. Qualitative Clip Feedback
	. Time Saved Metric

	. Discussion
	. Conclusion
	. Team Responsibilities
	. Tony's
	. Danica's


